Search results

Search for "Shono oxidation" in Full Text gives 2 result(s) in Beilstein Journal of Organic Chemistry.

Electrochemical Friedel–Crafts-type amidomethylation of arenes by a novel electrochemical oxidation system using a quasi-divided cell and trialkylammonium tetrafluoroborate

  • Hisanori Senboku,
  • Mizuki Hayama and
  • Hidetoshi Matsuno

Beilstein J. Org. Chem. 2022, 18, 1040–1046, doi:10.3762/bjoc.18.105

Graphical Abstract
  • necessary in some cases (path b in Scheme 1) [14][15]. On the other hand, N-acyliminium ions can easily be generated by electrochemical oxidation without those reagents. Electrochemical oxidation of amides/carbamates yielding N-acyliminium ions is well known as Shono oxidation (path c in Scheme 1) [16] and
  • -rich arenes or silyl enol ethers preferentially takes place at the anode due to their, in general, more positive oxidation potentials than those of amides/carbamates. Therefore, Friedel–Crafts-type amidomethylation by using Shono oxidation is successfully carried out as a two-step process
  • : electrochemical oxidation of amides/carbamates yielding α-methoxylated amides/carbamates (Shono oxidation, path c in Scheme 1) followed by the reaction of the isolated α-methoxylated amides/carbamates with arenes in the presence of a Lewis acid catalyst (path e in Scheme 1) [16]. Although the use of CH2Cl2 as a
PDF
Album
Supp Info
Letter
Published 18 Aug 2022

The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon–carbon bond formation via electrogenerated N-acyliminium ions

  • Alan M. Jones and
  • Craig E. Banks

Beilstein J. Org. Chem. 2014, 10, 3056–3072, doi:10.3762/bjoc.10.323

Graphical Abstract
  • are useful reactive synthetic intermediates in a variety of important carbon–carbon bond forming and cyclisation strategies in organic chemistry. The advent of an electrochemical anodic oxidation of unfunctionalised amides, more commonly known as the Shono oxidation, has provided a complementary route
  • electroorganic techniques and future directions. Keywords: anodic oxidation; electrochemistry; electroorganic, electrosynthesis, N-acyliminium ions; natural products; non-Kolbe oxidation; peptidomimetics; Shono oxidation; synthesis; Review N-Acyliminium ions are synthetically versatile N-Acyliminium ions [1][2
  • radical initiating agent such as distannane (Scheme 6). This allows the N-acyliminium ion to react with an alkyl halide to generate the typical carbon–carbon products of the Shono oxidation [19][27][28] Examples of reactions with activated olefins have been reported using the generation of carbon free
PDF
Album
Review
Published 18 Dec 2014
Other Beilstein-Institut Open Science Activities